Human SRCAP and Drosophila melanogaster DOM are homologs that function in the notch signaling pathway.
نویسندگان
چکیده
The putative ATPase chromatin-remodeling machine SRCAP was identified in a yeast two-hybrid protein screen by interaction with the histone acetylase CBP. SRCAP is implicated in the transcriptional coactivation of cyclic AMP- and steroid-dependent promoters, but no natural chromosomal targets for SRCAP regulation have been identified. DOM is the unique SRCAP homolog in Drosophila melanogaster. The goal of this study was to test whether SRCAP is a functional homolog of DOM and to identify potential activities and targets of SRCAP in vivo. We show that human SRCAP complements recessive domino mutant phenotypes. This rescue depends on an intact ATPase homology domain. SRCAP colocalizes extensively with DOM on Drosophila polytene chromosomes and is recruited to sites of active transcription, such as steroid-regulated loci, but not to activated heat shock loci. We show that SRCAP recruits Drosophila CBP to ectopic chromosomal sites, providing the first evidence to suggest that SRCAP and CBP interact directly or indirectly on chromosomes. We show that DOM is a Notch pathway activator in Drosophila and that wild-type SRCAP-but not an ATPase domain mutant-can substitute for DOM in Notch-dependent wing development. We show that SRCAP potentiates Notch-dependent gene activation in HeLa cells. Taken together, these data implicate SRCAP and DOM in developmental gene activation.
منابع مشابه
A Targeted Genetic Modifier Screen Links the SWI2/SNF2 Protein Domino to Growth and Autophagy Genes in Drosophila melanogaster
Targeted genetic studies can facilitate phenotypic analyses and provide important insights into development and other complex processes. The SWI2/SNF2 DNA-dependent ATPase Domino (Dom) of Drosophila melanogaster, a component of the Tip60 acetyltransferase complex, has been associated with a wide spectrum of cellular processes at multiple developmental stages. These include hematopoiesis, cell p...
متن کاملDrosophila as a genetic tool to define vertebrate pathway players.
In many instances, the strength of Drosophila melanogaster genetics can be used to enhance our understanding of complex vertebrate signaling systems. The general success of this approach is underscored by the large number of vertebrate signaling components whose very names derive in part from the names of Drosophila mutants. Examples include the vertebrate pathway components Sonic Hedgehog, Son...
متن کاملNotch Signaling during Oogenesis in Drosophila melanogaster
The Notch signaling pathway is an evolutionarily conserved intercellular signaling mechanism that is required for embryonic development, cell fate specification, and stem cell maintenance. Discovered and studied initially in Drosophila melanogaster, the Notch pathway is conserved and functionally active throughout the animal kingdom. In this paper, we summarize the biochemical mechanisms of Not...
متن کاملA Targeted In Vivo RNAi Screen Reveals Deubiquitinases as New Regulators of Notch Signaling
Notch signaling is highly conserved in all metazoan animals and plays critical roles in cell fate specification, cell proliferation, apoptosis, and stem cell maintenance. Although core components of the Notch signaling cascade have been identified, many gaps in the understanding of the Notch signaling pathway remain to be filled. One form of posttranslational regulation, which is controlled by ...
متن کاملComparative evaluation of NOTCH signaling molecules in the endometrium of women with various gynecological diseases during the window of implantation
Objective(s): NOTCH signaling pathway is well known for its role in cell fate, cell survival, cell differentiation, and apoptosis. Some of the NOTCH signaling genes are critical for endometrial function and implantation in animals and appear to play a similar role in humans. The purpose of the current study was to investigate the potential roles of some main components of the NOTCH family in hu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 25 15 شماره
صفحات -
تاریخ انتشار 2005